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The Effect of Microstructure,
Thickness Variation, and Crack
on the Natural Frequency
of Solar Silicon Wafers
Vibration is one of the most common loading modes during handling and transport of
solar silicon wafers and has a great influence on the breakage rate. In order to control
the breakage rate during handling and facilitate the optimization of the processing steps,
it is important to understand the factors which influence the natural frequency of thin sili-
con wafers. In this study, we applied nonlinear finite element method to investigate the
correlation of natural frequency of thin solar silicon wafer with material microstructures
(grain size and grain orientation), thickness variation and crack geometry (position and
size). It has been found that the natural frequency for anisotropic single crystal silicon
wafer is a strong function of material orientation. Less than 10% thickness variation will
have a negligible effect on natural frequency. It is also found out that cracks smaller than
20 mm have no dominant effect on the first five natural frequency modes anywhere in the
silicon wafer. [DOI: 10.1115/1.4024248]
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1 Introduction

Despite the current crisis the crystalline silicon-based photovol-
taic solar industry bear the promise of renewable energy resour-
ces. At present, single-crystalline (sc-Si) and multicrystalline
silicon (mc-Si)-based solar cells make up over 80% of the com-
mercial solar cells in the market [1]. Thinner and larger silicon
wafers are preferable for cost reduction [2]. The production cost
of silicon wafers consists of 75% of the total cost of solar module.
Recent industrial studies have shown that wafer and cell breakage
during handling, transport, and other processing steps increased in
solar cell production using thinner wafers [3–5]. It is therefore
crucial to understand the origin of wafer breakage in order to
enhance the production efficiency. Propagation of cracks or dam-
age is the fundamental reason of breakage of Si wafers. Vibration
acting as a crack driving force is one of the most common loading
modes during handling and subsequent processing steps and has a
major impact on wafer breakage rate. Very few studies have been
performed on vibration analysis of silicon wafers. The vibration
of silicon wafers can draw an analogy to that of thin plates. Leissa
[6] presented analytical solutions for the free vibration of thin iso-
tropic rectangular plates. Twenty-one types of boundary condi-
tions combined with simply supported, clamped and free edges
were studied. Analytical solutions for the natural frequencies can
be obtained only for a few cases. For the free vibration of aniso-
tropic rectangular plates, it is even more difficult to obtain analyti-
cal solutions. Numerical methods, such as the Rayleigh–Ritz
method, finite element method (FEM), and the differential quadra-
ture method are the chief approaches for solving anisotropic rec-
tangular plate problems [7–17]. Huang and Zhang [18,19] studied
the vibration problem of isotropic and orthotropic rectangular
plates. They also used the same approach to solve the vibration
problem of anisotropic rectangular plates and obtained a general
analytical solution [20]. More recently, the free vibration of

anisotropic plates with simply supported or clamped boundary
conditions was analysed by using the discrete singular convolu-
tion (DSC) algorithm [21,22]. So far, only the clamped and simply
supported boundary conditions were used for the vibration analy-
sis of anisotropic plates, the free boundary condition has not been
employed due to its difficulty in using the DSC algorithm [23]. It
must be noted that the solutions for thin plates cannot be directly
extended to the case of solar silicon wafers which are made of het-
erogeneous microstructures, process nonuniform thickness and
consist of cracks.

The purpose of this study is to understand the effect of micro-
structure (grain size and material orientation), thickness variation,
and crack geometry on the natural frequency of silicon wafers.
The finite element (FE) program ABAQUS has been used for the
analyses. The paper is organized as follows: the theoretical
aspects of the study including the material properties, models, and
available solutions for thin plates are presented first. The model
verification, parameter study, results, and discussion are presented
in Sec. 3. Some concluding remarks are given at the end of paper.

2 Modelling Procedure and Material Properties

2.1 Wafer Geometry and FE Mesh. The dimensions of
the silicon wafers modelled in the present study are
156� 156� 0:2 mm3. In order to consider the effect of material
microstructure, 20-node quadratic brick elements (type C3D20R)
were utilized. The FEM analysis accounts for the geometric
nonlinearity associated with large deformation of thin wafers. Pre-
liminary static analysis showed that the differences in the results
obtained from linear and nonlinear simulations are sufficiently
large to indicate that a linear simulation is not adequate for these
wafers when static analysis is target of study. Similar conclusion
in this regard was also drawn in Ref. [24]. However, the ABAQUS

uses a linear solution to determine the natural frequencies and this
nonlinearity has no dominant effect on the natural frequency cal-
culations. A preliminary mesh convergence study has been carried
out, and finally second order brick elements with four elements in
thickness direction and 78 elements in length and width directions
were selected for the analyses. Two boundary conditions, free
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edge (FFFF) and simply supported edge (SSSS) are used to verify
the model.

2.2 Material Property. In this study, both isotropic and ani-
sotropic silicon wafers have been considered. For the anisotropic
case, both single and multicrystal structures are studied.

2.2.1 Isotropic Model. A reference case with elastic and iso-
tropic silicon wafers was considered first. The values of Young’s
modulus, density, and Poisson ratio for cast silicon are taken as,
E¼ 162.5 GPa, q ¼ 2330 kg=m3, and t¼ 0.223. These values are
widely used in the literature [25].

2.2.2 Anisotropic Model. Multicrystalline silicon wafers are
anisotropic in nature. Anisotropic material properties are specified
using the stiffness matrix defined in the proper coordinate system
(x,y,z) [26]. The stiffness coefficients are obtained from the known
compliance coefficients for single crystal silicon with respect to
the crystal coordinate system. In general, multicrystalline silicon
wafers are characterized by a {1 1 0} surface and a h1 1 2i growth
direction [27]. Therefore, the stiffness is specified using the
{1 1 0} single-crystal properties with [1 1 �2], [1 �1 1], and
[1 1 0] orientations representing the x, y, and z axes, respectively.
The resulting elastic stiffness matrix (in GPa) for the silicon wafer
is given

CCz
ijkl ¼

165:64 63:94 63:94 0 0 0

165:64 63:94 0 0 0

165:64 0 0 0

79:51 0 0

79:51 0

sym 79:51

0
BBBBBB@

1
CCCCCCA
(1)

In the analysis of multicrystalline silicon wafers, this stiffness ma-
trix will be rotated for each grain independently. The values of
density and Poisson ratio are kept the same as the isotropic case.

2.3 Thin Plate Theory. The available solutions for thin
plates are employed to verify the present thin wafer models. This
verification was done by comparing the natural frequencies calcu-
lated by thin plate theory and the results from FE analyses. For
isotropic material, the free harmonic vibration of a thin plate with
a constant thickness t is governed by the following differential
equation:

�Dr4W � x2qtW ¼ 0 (2)

where W x; yð Þ is the deflection of the plate, r4 is the biharmonic
differential operator; �D ¼ ðEt3=12 1� t2ð ÞÞ is the bending rigidity
with E and � being the Young’s modulus and the Poisson’s ratio,
respectively; x is the circular frequency, and q is the mass
density.

The governing differential equation for a thin anisotropic rec-
tangular plate with length a, width b, and thickness t, is given by

�D11

@4W

@x4
þ 4 �D16

@4W

@x3@y
þ 2 �D12 þ 2 �D66ð Þ @

4W

@x2@y2

þ 4 �D26

@4W

@x@y3
þ �D22

@4W

@y4
¼ qtx2W (3)

where �D12, �D12, �D22, �D16, �D26, and �D66 are the stiffness
coefficients.

For the convenience of comparisons, the nondimensional fre-
quency, �x, is introduced

�x ¼ xa2

ffiffiffiffi
qt
�D

r
(4)

for thin isotropic rectangular plates. For orthotropic and aniso-
tropic rectangular plates, a similar nondimensional frequency can
be used

�x ¼ xa2

ffiffiffiffiffiffi
qt
�D0

r
; �D0 ¼

E11t3

12 1� t12t21ð Þ

� �
(5)

where t12 and t21 are the Poisson ratios in direction 1 and 2,
respectively. For thin isotropic rectangular plates, an exact solu-
tion for the nondimensional frequency is available [10]

�xexact ¼ p2 m2 þ n2 a

b

� �2
� �

m; n ¼ 1; 2; :::ð Þ (6)

The exact nondimensional frequency for thin orthotropic rectan-
gular plates is given [28]

�xexact ¼ p2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�D11

�D0

m4 þ 2
�D12

�D0

þ 2
�D66

�D0

� �
a

b

� �2

m2n2 þ
�D22

�D0

a

b

� �2

n4

s

m; n ¼ 1; 2;…ð Þ (7)

Fig. 1 Comparison of the natural frequency calculated by analytical solution and FEM for isotropic model with (a) FFFF
boundary conditions and (b) SSSS boundary
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Equations (4) and (7) are used as the reference solutions for the
present isotropic and anisotropic silicon wafers, respectively. A
percentage relative error (Re) is defined to compare the results
between the analytical and FE solutions

Re %ð Þ ¼ �xFEM � �xexact

�xexact

� 100% (8)

where �xFEM and �xexact are the nondimensional natural frequencies
calculated by FEM and the reference solutions, respectively. The
acceptable relative error is set to be 2.5% in this investigation.

3 Results and Discussion

3.1 Model Verification. To verify the model, two boundary
conditions, FFFF and fully SSSS have been used for isotropic
single crystal wafers and only SSSS boundary condition is consid-
ered for anisotropic single crystal wafers. Many attempts have
been made to optimize the mesh and element type to achieve
the acceptable relative accuracy set to be 2.5% in this study.
Normalized frequency is used to present results. The normalized
frequency is defined as the ratio of natural frequency of aniso-
tropic case divided by that of the isotropic one. The comparison
between the natural frequencies calculated by the FEM and exact
solution for the isotropic wafer are presented in Fig. 1(a) for FFFF
boundary conditions and Fig. 1(b) for SSSS boundary condition.
Figure 2 compares the natural frequencies for the anisotropic case
with SSSS boundary conditions. All the results from Figs. 1 and 2
show a good agreement between the exact solutions and the FEM
results. We may conclude that the model, we used is sufficient for
the purpose of the present investigation. It should be noted that
only the first five natural frequencies are focused in the present
study. Although these five natural frequencies are all out of plane,
they are not the same in regarding to stress state and distribution
in wafers. For instance, as it observed in Fig. 3, the first mode is
like a semi twisting loading and therefore shear stress is the domi-
nant stress. But the second and third mode are biaxial bending and

Fig. 2 Comparison of the natural frequency between analytical
solution and FEM for anisotropic model with SSSS boundary
conditions

Fig. 3 maximum principle stress for first five shape modes of isotropic silicon wafers with
FFFF boundary condition
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semi pure bending, respectively. In addition to, fourth and fifth
modes are a mixture of bending and twisting.

3.2 Effect of Microstructure on Natural Frequency:
Results and Discussion. In order to investigate the effect of
microstructure on the natural frequency of silicon wafers, six cases
(single crystalline silicon, 2, 4, 8, 16, and 32 grains) are considered
and different material orientations are studied in each case. Figure
4 shows an example of material orientations in each case.

3.2.1 Single Crystal Silicon. In the single crystal silicon case
(only 1 grain), the grain orientation is rotated along the z and x/y

axis from 0 deg to 45 deg by an increment 2 deg. There are 44
(22� 2) rotations (22 rotation on each axis) in total. The first five
natural frequencies are calculated for each rotation. The first five
modes should be sufficient for vibration analysis of wafer
handling process. The results are illustrated in Figs. 5(a) and 5(b),
respectively. Figure 5(a) shows the effect of material orientation
rotated along the z axis. The zero rotation state represents the
coordinate system defined in Sec. 2.2.2. It is interesting to note
that the first mode natural frequency for the single crystal wafer at
the zero rotation state is about 8% higher than the one of corre-
sponding isotropic wafer. This value decreases with the increase
of the rotation, and approaches the same value of isotropic wafer

Fig. 4 Example of grain size and material orientations for the models with 1, 2, 4, 8, 16, and 32
grains

Fig. 5 Effect of material orientation on the normalized frequency for single crystal silicon rotating (a) along z axis and (b) along
x/y axis
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at hz¼ 14 deg. It further decreases to a minimum which is about
11% smaller than that of the isotropic wafer at 45 deg. The trend
of the second mode natural frequency is similar to the first model,
but in an opposite way. The effect of grain orientation on the
natural frequency of other modes is less significant compared with
the first two modes. The curves for all the five modes cross
approximately at hz¼ 19 deg, and all the five normalized natural
frequencies approach a similar value below 1.0, which indicates
that at this specific grain orientation the natural frequency calcu-
lated using isotropic assumption will overestimate the natural fre-
quency of anisotropic silicon in every mode. Figure 5(b) displays
the effect of material orientation rotated along the x/y axis on the
natural frequency. Unlike the results shown in Fig. 5(a) where
each curve shows a monotonic increasing or decreasing trend and
all the curves cross at a specific grain orientation, the curves in
Fig. 5(b) are almost parallel to each other. The normalized first
mode natural frequency is always higher than 1. It implies the first
mode natural frequency for anisotropic wafer will be always
larger than the one for corresponding anisotropic wafer. The other
mode natural frequencies reach a minimum or maximum value at
hx/y¼ 20–25 deg. The minimum and maximum values are close to
1, which indicates that the natural frequency values are almost
the same for the isotropic and anisotropic cases at this material
orientation. In general, Fig. 5(b) shows that material orientation
along x/y axis does not play a strong role on the natural frequency
of anisotropic wafer. The small difference is caused by the dimen-
sion of wafers (thickness is much smaller than two other dimen-
sions), and therefore, anisotropy can be neglected in the thickness
direction.

3.2.2 Two-Grain Silicon Wafer. For the cases with two and
four grains, the same approach as for single crystal grain is

employed to study the effect of material orientation. For the case
with 2 grains, two equal rectangular grains (Fig. 4) are considered
and the material orientation increment is set to be 5 deg instead of
2 deg. We fix the coordinates of one grain (which is called first
grain) at 0 deg direction and rotate the other (the second grain) by
5 deg along z axis from 0 deg to 45 deg (nine positions in
between). Afterward, the first grain which was fixed at 0 deg will
be rotated by 5 deg and hold in this new position, and the second
grain is rotated by 5 deg until reaching 45 deg. This algorithm is
repeated until the first grain reaches 45 deg. For each set of mate-
rial orientation, the same procedure is employed to calculate the
natural frequency. Figures 6 and 7 show the effect of material ori-
entation on the natural frequency for 2 grains rotating along z and
x/y axis, respectively. Similar to the single crystal case (Fig. 5(a)),
the modes 1 and 4 natural frequencies monotonically decrease
with the rotation along the z axis, frequencies for other three
modes increase with the rotation. For the single crystal case
shown in Fig. 5(a), all the curves cross at the z rotation between
20 deg and 25 deg (symmetrical line). It is interesting to observe
that for the two-grain anisotropic wafer all the five modes tend to
converge to an average value 0.95 at z rotation approximately
45 deg, 37.5 deg, 12.5 deg, and 0 deg for the four cases shown in
Fig. 6, respectively. These configurations are compounded of the
2 single grains with different grain orientation. Figure 6 also
shows that the two-grain anisotropic wafer displays less variation
in natural frequency with respect to the z angle than the single
crystal. For instance, the variations for first mode are 8.4% in Fig.
6(a), 12.5% in Fig. 6(b), 10.6% in Fig. 6(c), and 7.3% in Fig. 6(d),
respectively. However, the variation for the single crystal wafer is
18.4%. Figure 7 shows the effect of material orientation along x/y
axis. A similar trend to that shown in Fig. 5(b) for the single crys-
tal wafer can be seen for the two-grain wafer. The effect of the

Fig. 6 Effect of material orientation rotating along z axis on the normalized frequency for the
wafer with 2 grains (grain 1 fixed at a 5 0 deg, b 5 15 deg, c 5 30 deg, and d 5 45 deg)
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material orientation along x/y axis is marginal and all the curves
are parallel to each other. The normalized natural frequency for
mode 1 is always the largest, larger than 1. The second mode nor-
malized natural frequency became the smallest and always below
1 with other modes lying in between the first and second modes. It
is interesting to note that the fourth mode normalized natural fre-
quency is very close to 1, independent of the material orientation.
This observation indicates that the fourth mode natural frequency
for the anisotropic two-grain wafer can be calculated from the cor-
responding isotropic wafer.

3.2.3 Multigrains. In this section general cases with multi
grains up to 32 grains have been considered using a random
method. For each grain, 20 nonoverlapping random crystalline
orientations are generated by a MATLAB code. The results can be
seen in Figs. 8 and 9. In these figures, the average value of each
mode corresponding to 20 random orientations are compared for
the cases with 4, 8, 16, and 32 grains. Figure 8 shows the effect of
materials orientation along z axis on the normalized natural fre-
quency. It can be seen that for all cases with multi grains up to 32
the mode 1 normalized natural frequency of multigrain silicon
wafers is always larger than 1, and normalized modes 2–4 natural
frequencies are always smaller than 1. However, with the increase
of the number of grains, the natural frequency of anisotropic multi

Fig. 7 Effect of material orientation rotating along x/y axis on the normalized frequency for the
wafer with 2 grains (grain 1 fixed at a 5 0 deg, b 5 15 deg, c 5 30 deg, and d 5 45 deg)

Fig. 8 Effect of material orientation for 4, 8, 16, and 32 grains
on the first five natural frequencies

Fig. 9 Effect of material orientation rotate on z axis for 4, 8, 16,
and 32 grains on the first mode
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grain silicon wafers for both mode 1 and modes 2–5 are approach-
ing the values of the corresponding isotropic silicon wafers. This
phenomenon can also be understood from Fig. 9 which displays
the normalized natural frequency of mode 1 as a function grain
number. The normalized frequency monotonically approaches to
1 with the increase of grain number. It can be generally concluded
that the natural frequency calculated assuming isotropic elastic
properties of silicon is a good representation of the natural fre-
quency of anisotropic multi crystalline silicon wafers with an error
less than 3.8% (the maximum error correspond to 32 grains). In a
real solar silicon wafer, the grain numbers are much higher than
32; therefore, the error should be less than 3.8%. Frequency band
is another useful parameter to understand the effect of multi grains
on natural frequency. A difference between the maximum and
minimum natural frequencies related to different material orienta-
tion is defined as a frequency band. Figure 10 plots the frequency
band as a function of the grain number. The results for the single
crystal wafer and wafers with two and four grains are also
included. For the single crystal wafer, a frequency band of 0.187
can be expected for the first mode. A dramatic reduction of the
frequency band for modes 1 and 2 can be seen with a more or less
linear reduction for other three modes. When the number of grain
is 32, the frequency band of all the modes approaches to 0.02 (2%
of the corresponding the isotropic case).

3.3 Thickness Variation Effect. Due to the nature of sawing
process, the cross section of silicon wafers (thickness direction) is
nonuniform (a trapezoid). Thickness variation can influence the
natural frequency. Wafer stiffness will be enhanced by increasing
the thickness, which can further increase the natural frequency.

On the other hand, increase of mass by increasing thickness will
lead to reduction of natural frequency. The inlet in Fig. 11 shows
the definition of the thickness variation for single crystal wafer.
Thickness variation up to 20 lm has been analysed. Figure 11
shows variation of the first five natural frequencies as a function
of the thickness variation. As it can be seen, at 610 lm, the varia-
tion of thickness has no remarkable effect on natural frequencies.
For modes 2 and 3, the natural frequency is not influenced by the
thickness variation considered, since most deflection in this mode
is related to the middle layer of the silicon wafer which is domi-
nated by the nominal value (nominal value corresponds to the
smooth and uniform thickness, 0.2 mm). A relatively larger differ-
ence in natural frequency value is observed for the fourth mode.

3.4 Effect of Crack Geometry. Silicon wafers can possess
cracks and it is interesting to understand how the natural fre-
quency is influenced by the presence of initial cracks. Understand-
ing the influence of cracks may facilitate the crack detection.
Previous results showed that normalized frequency approaches to
1 with the increase of grain number. Therefore, multicrystal
silicon wafer is represented by an isotropic silicon wafer model.

Fig. 10 Frequency band for the first five natural frequencies

Fig. 11 The effect of thickness variation on the natural fre-
quency of an isotropic model

Fig. 12 The effect of crack size on the natural frequency of an
isotropic wafer model with a crack in the center

Fig. 13 The effect of crack position on the natural frequency
with crack size 5 20 mm

Journal of Solar Energy Engineering FEBRUARY 2014, Vol. 136 / 011001-7

Downloaded From: http://solarenergyengineering.asmedigitalcollection.asme.org/ on 08/24/2013 Terms of Use: http://asme.org/terms



To understand the effect of crack size on natural frequency, it is
assumed that all cracks are located at the center of the silicon
wafer and only the crack size has changed. The effect of the size
of a center crack on the natural frequency is plotted in Fig. 12.
The result of the wafer without a crack is also included for com-
parison. It shows that the natural frequency up to the 8th mode is
not significantly influenced by a central crack less than 20 mm. In
addition, three crack locations (center, next to edge and corner of
the wafer) are considered to investigate the effect of crack loca-
tion on natural frequency. Figure 13 depicts the effect of position
of a 20 mm crack size on the natural frequency. As it can be
observed from Fig. 13, the natural frequency is not sensitive to the
crack position for crack less 20 mm. Finally, Fig. 14 presents
the effect of crack position (20 mm length) on the normalized
frequency for the single crystal silicon wafer with different
material orientations. It also shows that material orientation is not
sensitive to the crack position.

4 Conclusions

Vibration is one of the most common loading modes during
handling of solar silicon wafer and has a significant influence on
breakage rate during subsequent handling and processing steps. In
this study, we address an important question as whether an aniso-
tropic multi crystalline silicon wafer can be treated as an isotropic
wafer in a vibration analysis by focusing on the correlation
between the natural frequency and solar silicon wafer microstruc-
ture (grain size and grain orientation), thickness variation, and
crack geometry (position and size). Following conclusions can be
drawn:

• The natural frequency of single crystal silicon wafer is
strongly dependent on the material orientation. The depend-
ence on the material orientations is reduced in the case of
multi crystalline silicon wafer. When the number of grains is
larger than eight, the maximum error of the natural frequency
of an anisotropic wafer modelled by an isotropic wafer in a
vibration analysis is below 5%.

• Single crystal silicon wafer has the highest frequency band
and the frequency band reduces with the increase of the grain
number.

• Up to 10% thickness variation has no observable effect on
the natural frequency. Thickness tolerance less than 10% can
be neglected in a vibration analysis and the wafer can be
treated as a uniform plate.

• Natural frequency is not strongly influenced by the crack
position for crack less than 20 mm. A significant effect can
occur at higher modes.
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